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Abstract A new remodeling theory accounting for

mechanically driven collagen fiber reorientation in car-

diovascular tissues is proposed. The constitutive equations

for the living tissues are motivated by phenomenologically

based microstructural considerations on the collagen fiber

level. Homogenization from this molecular microscale to

the macroscale of the cardiovascular tissue is performed

via the concept of chain network models. In contrast to

purely invariant-based macroscopic approaches, the pres-

ent approach is thus governed by a limited set of physically

motivated material parameters. Its particular feature is the

underlying orthotropic unit cell which inherently incorpo-

rates transverse isotropy and standard isotropy as special

cases. To account for mechanically induced remodeling,

the unit cell dimensions are postulated to change gradually

in response to mechanical loading. From an algorithmic

point of view, rather than updating vector-valued micro-

structural directions, as in previously suggested models, we

update the scalar-valued dimensions of this orthotropic unit

cell with respect to the positive eigenvalues of a tensorial

driving force. This update is straightforward, experiences

no singularities and leads to a stable and robust remodeling

algorithm. Embedded in a finite element framework, the

algorithm is applied to simulate the uniaxial loading of a

cylindrical tendon and the complex multiaxial loading

situation in a model artery. After investigating different

material and spatial stress and strain measures as potential

driving forces, we conclude that the Cauchy stress, i.e., the

true stress acting on the deformed configuration, seems to

be a reasonable candidate to drive the remodeling process.

Introduction and motivation

Living tissues are able to adapt to physiological and path-

ophysiological stimuli in order to keep adequate perfusion

according to the metabolic demand of the tissue. For

example, changes in mechanical stimuli lead to altered

cellular and extracellular activities, and typical observed

biological responses are related to growth, remodeling,

adaptation, and repair, i.e., mechanobiology (see, e.g.,

Humphrey [33], Huang et al. [31], Ingber [34], Klein-Nu-

lend et al. [35], Wang and Thampatty [55], Holzapfel and

Ogden [28, 29], Mofrad and Kamm [47] or Lehoux et al.

[40]). Changes in the material (and structural) properties of,

for example, the artery wall through alterations in its

internal microstructure constitute an active process that

occurs in response to changes of mechanical parameters, a

process called ‘arterial remodeling.’ It is the endothelium

cell that sense mechanical and humoral parameters, trans-

duce signals to the underlying smooth muscle cells and to

the surrounding tissue, and relay mechanical and bio-

chemical changes into biomolecular events. Therefore, the

endothelium at the interface of the blood plays a crucial role

in the initiation of arterial remodeling. In particular, in

cardiovascular tissues, remodeling processes are important
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in the context of arterial development, atherosclerosis, and

healing in response to arterial injury. A great deal of inter-

disciplinary research effort is devoted to the (mechanical)

signaling pathways because they may enable the identification

of therapeutic targets and the development of new pharma-

cological strategies. Moreover, understanding the interplay

between the architecture of the internal microstructure and the

mechanical loading is of fundamental importance to engineer,

e.g., blood vessel substitutes, see Nerem and Seliktar [48].

The function and integrity of organs are maintained by

the tension in collagen fibers, which contribute signifi-

cantly to the stability and strength of organs. Collagen

fibers are typically considered as the main load bearing

constituent of the extracellular matrix. Accordingly,

changes in the material (and structural) properties can

primarily be attributed to variations in collagen content,

type and thickness and, of course, in the orientation within

the tissue. Leung et al. [41, 42] were amongst the first to

verify experimentally that mechanical forces relate to

pressure and flow direct medial cell biosynthesis and

modulate structural adaptations to hemodynamic changes.

Based on in vitro studies of smooth muscle cells, they

reported that aortic medial cells attached to elastic mem-

branes and subjected to cyclic stretching consistently syn-

thesized collagen of types I and III much more rapidly than

did cells growing on stationary membranes. In the present

manuscript we use the word ‘remodeling’ exclusively with

respect to collagen fiber reorientation, while the type and

thickness of collagen as well as its content and its con-

centration are assumed to be constant. In addition, we do

not address adaptation in the form of volumetric growth

which is addressed in detail elsewhere in the literature, see,

e.g., Rodriguez et al. [49], Lubarda and Hoger [43] or Kuhl

et al. [38]. There is, however, strong evidence that growth

and remodeling can indeed be viewed as separate indi-

vidual processes. Stopak and Harris [50] studied the ori-

entation of collagen fibrils due to the forces exerted on

them by fibroblast in gels. Fiber reorientation was found to

take place in response to changes in the mechanical loading

although no significant growth, resorption, and production

of new fibers was reported. Motivated by these findings,

Garikipati et al. [20] provided a theoretical framework that

focuses exclusively on collagen fiber remodeling and

supported their theory by a set of remodeling experiments.

For a more sophisticated theoretical approach that captures

the interaction of the individual phenomena of growth and

remodeling, the reader is referred to Menzel [45].

To gain further insight into the complex biomechanical

phenomena related to tissue remodeling we aim at formu-

lating and implementing a novel constitutive framework

for collagen fiber remodeling with particular emphasis on

the arterial wall, in which type I collagen is the major

constituent. As such, the central focus of this study is to

capture, predict and explain basic trends observed in col-

lagen fiber remodeling and its impact on the structural

response at the tissue or organ level. There seems to be a

general agreement that the interplay between matrix stress,

fibroblast alignment and stress in the actin network is

responsible for collagen fibril reorientation as reported by

Stopak and Harris [50] and described in detail by Gariki-

pati et al. [20]. However, we do not aim at explaining the

origin of remodeling which is governed by many highly

complex interactive phenomena on the cellular level that

involve altered gene expression in response to altered

loading (i.e., gene transcription, translation, protein syn-

thesis, packing, and activation) which eventually results in

altered rates of turnover of cells and matrix. Nor do we aim

at following the classical continuum mechanics approach

and develop a purely invariant based macroscopic theory

governed by a number of abstract material parameters. Our

goal is to apply suitable homogenization techniques to

derive a sound phenomenologically and micromechani-

cally based formulation with a limited number of param-

eters that have a clear physical interpretation.

To this end, we begin our investigations on the

microstructural or rather molecular level focusing on the

mechanical description of the individual collagen fibers.

The characteristic feature of typical collagen molecules

is their long, stiff, triple-stranded helical structure in

which three collagen polypeptide chains are wound

around one another in rope-like superhelical structures

which are stabilized by numerous hydrogen bonds. The

mechanical properties of these helical structures are un-

like those of any other natural or synthetic polymers.

Collagen helices display a remarkable stiffness which

may be characterized appropriately through the so-called

wormlike chain model. The wormlike chain, or rather

Kratky and Porod model [36], imagines the polymer as a

rod that bends smoothly under thermal fluctuations.

Traditionally applied to model the DNA double helix,

see Bustamante et al. [7, 8] and Marko and Siggia [44],

the Kradky and Porod model was recently adopted to

simulate the behavior of the collagenous triple helix by

Bischoff et al. [3, 4], Garikipati et al. [19, 20] and Kuhl

et al. [37, 39].

After the collagen fibrils have formed in the extra-

cellular space, they are greatly strengthened by the for-

mation of covalent crosslinks between lysine residues of

the constituent collagen molecules. If cross-linking is

inhibited, the tensile strength of the fibrils is drastically

reduced, the collagenous tissue becomes fragile and the

structure tends to tear, see Alberts et al. [1]. To incor-

porate these characteristic cross-linking network effects,

different isotropic chain network models have been pro-

posed in the past, see, e.g., Flory [17], Treloar [53] and

Arruda and Boyce [2, 5, 6]. In order to account for the
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anisotropic nature of cardiovascular tissues on the mes-

oscopic extracellular matrix level, we generalize the

cubic isotropic unit cell of the Arruda and Boyce model

to obtain the orthotropic eight-chain model suggested

recently by Bischoff et al. [3, 4].

Finally, it remains to incorporate the living nature of the

tissue and its ability to adapt its collagenous microstructure

to the mechanical loading environment. Naturally, fiber

directions will evolve in vivo to optimize the load bearing

capacity while keeping the required compliance. Tradi-

tionally, remodeling theories in arteries can be classified

into stress driven and strain driven approaches. The former

are typically based on the assumption that the cardiovas-

cular tissue remodels its geometry to restore circumferen-

tial wall stress due to pressurization and wall shear stress

due to blood flow to ‘normal’ levels, see, e.g., Taber and

Humphrey [52], Gleason and Humphrey [22] or Hariton

et al. [25]. Alternatively, motivated by successful predic-

tions in hard tissue mechanics, the authors of the latter type

of models suggest that strain rather than stress is the rele-

vant driving force for the remodeling process, see Kuhl

et al. [37], Himpel et al. [26] or Driessen et al. [13]. Either

of the two theories is able to identify characteristic

microstructural directions which are allowed to reorient

with respect to the eigendirections of a mechanically rel-

evant second-order tensor. In terms of algorithmic proce-

dures, this vector reorientation typically leads to complex

rotational updates which usually involve singularities due

to the trigonometric nature of the underlying update

equation, see, e.g., Menzel [45, 46]. Although very elegant

from a mathematical point of view and maybe well-suited

for microstructures with one predominant orientation, these

reorientation models seem rather cumbersome in the con-

text of arterial walls where multiple fiber families need to

be accounted for.

When aiming to develop reliable constitutive theories

for remodeling in cardiovascular tissues it is crucial to have

detailed insight in the structural arrangement of the colla-

gen fiber distribution. By using the birefringent properties

of collagen, Finlay et al. [16] elaborated tangential sections

of cerebral arterial walls to examine the integrated struc-

tural order of the individual layers. Alternative techniques

providing information about the collagen fiber distribution

in arterial walls were discussed recently by Elbischger

et al. [14, 15]. Along these lines, continuously distributed

collagen fiber orientations were incorporated in the more

recent models by Driessen et al. [11, 12], Freed et al. [18]

and Gasser et al. [21].

Experimental findings suggest that at biological equi-

librium two predominant fiber orientations can be identi-

fied in each layer of the arterial wall. Typically, these two

discrete families of collagen fibers are found to be located

somewhere in between the directions of the two maximal

principal stresses (or strains). Hence, as the stress (or

strain) state varies with the radial position, the orientations

of the two collagen fiber families also vary across the

thickness of the arterial wall, as reported by, e.g., Taber

and Humphrey [52] and Holzapfel et al. [30]. This varia-

tion across the wall thickness was successfully obtained

from the discrete collagen fiber reorientation models by

Driessen et al. [13] and Hariton et al. [25]. In [13] it was

assumed that the collagen fibers align along preferred

directions, situated in between the principal stretch direc-

tions, while in [25] the remodeling process was assumed to

be stress driven. Within the present manuscript, we com-

bine these basic assumptions with the fundamental concept

of chain network models to obtain a three-dimensional

remodeling theory which is general enough to predict

remodeling in complex multiaxial loading situations. In

contrast to existing theories, which strongly rely on com-

plex rotational updates, this new approach can be algo-

rithmically realized in terms of remarkably simple and

straightforward updates of scalar-valued spatial dimen-

sions.

The manuscript is organized as follows: the governing

equations of the micromechanically motivated remodeling

theory are derived in Sect. ‘‘Governing equations.’’ Starting

from the molecular level, we derive the constitutive

equations for anisotropic soft biological tissues based on

the concept of orthotropic chain network models. Section

‘‘Computational examples’’ then focuses on two particular

model problems, a cylindrical tendon subject to uniaxial

tension, and a tube-like artery subject to uniaxial stretch in

combination with a distending pressure. Section ‘‘Discus-

sion’’ closes with some final remarks.

Governing equations

In what follows, we summarize our set of constitutive

equations for anisotropic cardiovascular tissues. To this

end, we apply the following hypotheses:

• Hypothesis I: Large arteries seek to restore wall stress

to within a range of homeostatic values.

• Hypothesis II: Collagen fibers as the main load bearing

constituent of the extracellular matrix adapt their

orientation and align with respect to the principal stress

directions in order to minimize wall stress.

• Hypothesis III: Collagen fiber remodeling can be

modeled and simulated phenomenologically to improve

the understanding of fiber orientation and provide

further insight in the structural arrangement of the

individual arterial layers.

It should be mentioned, however, that although the pres-

ent model takes into account microstructural information,
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it is still based on a rather phenomenological approach in the

sense that it does not explain the mechanisms how the indi-

vidual cells actually sense changes in loading and commu-

nicate this information. Many different receptors on the

surface of endothelial cells and vascular smooth muscle cells

are able to detect subtle changes in the mechanical envi-

ronment. They initiate various different mechanotransduc-

tion cascades according to the nature of the mechanical

stimulus perceived. The cytoskeleton and other structural

components play an important role in mechanotransduction

as they are able to transmit and modulate tension between

focal adhesion sites, integrins and the extracellular matrix.

Moreover, changes in the mechanical environment may also

initiate changes in the ionic composition of the cells, medi-

ated by ion channels, stimulate various membrane receptors

and induce complex biochemical responses, see, e.g., Huang

et al. [31], Mofrad and Kamm [47] or Lehoux et al. [40] for

excellent overviews. Since we do not aim at simulating these

molecular mechanisms of mechanotransduction, all these

phenomena are modeled phenomenologically through a set

of continuum based remodeling equations which we describe

in the sequel.

We begin on the microstructural level with the con-

stitutive description of the individual collagen fibers. On

the mesolevel, we then elaborate a representative volume

element representing the extracellular matrix. On the

macroscopic level, we finally characterize the overall

tissue behavior through a micromechanically motivated

constitutive model which is able to account for micro-

structural adaptation in response to changes in the

mechanical loading.

On the collagen fiber level

On the microscopic level, we assume that the microstruc-

ture of a collagen triple helix is represented through the

wormlike chain model. Wormlike chain models were

introduced within the context of DNA mechanics by Marko

and Siggia [44], and Bustamante et al. [7, 8], and recently

applied to collagen fibers by Bischoff et al. [3, 4], Gari-

kipati et al. [19, 20] and Kuhl et al. [37, 39]. In the sta-

tistical mechanics of long chain molecules such as collagen

fibrils, the key kinematic variable that characterizes the

conformation of the chain is the end-to-end length r.

According to the wormlike chain model, the free energy

wchn of a single collagen fiber can be expressed in terms of

the end-to-end length in the following form.

wchn ¼ wchn
0 þ kh

L

4A
2

r2

L2
þ 1

1� r=L
� r

L

� �
ð1Þ

Herein, wchn
0 is the value of the chain energy in the

unperturbed state, k = 1.381 · 10–23 J/K is the Boltzmann

constant and h is the absolute temperature. In the case of

living tissues, we suggest h = 310 K, i.e., h = 37 �C.

The two parameters governing the chain behavior are

the contour length L and the persistence length A, as

illustrated in Fig. 1.

The force required to pull the ends of the chain away

from each other by a distance r thus follows straightfor-

wardly by taking the derivative of the free energy wchn with

respect to the end-to-end length.

f chn ¼ dwchn

dr
¼ kh

1

4A
4

r

L
þ 1

ð1� r=LÞ2
� 1

" #
ð2Þ

Note that due to the particular nature of the free energy

wchn, the end-to-end length r of a wormlike chain cannot

extend beyond its contour length L as 0 < r < L.

Remark 1 [Parameters on the collagen fiber level] The

wormlike chain model is essentially a two-parameter

model governed by the contour length L and the persistence

length A. Figure 1 illustrates the physical meaning of the

persistence length. It shows the force-displacement curves

of a single collagen fiber indicating the increase in initial

stiffness with increasing persistence length for, say,

A = 0.1, A = 0.4, and A = 0.8. Note that throughout the

entire manuscript, all lengths of the model have been

rendered non-dimensional by dividing them by the link

length of the chain, as proposed by Garikipati et al. [19].

Remark 2 [Specific data for the persistence length]

F-actin (a filamentous protein responsible for the con-

traction and relaxation of muscle) has a persistence

length A of approximately 16 lm. For nanotubes A is in
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Fig. 1 Collagen fiber level s Single chain force vs. chain stretch for

varying persistence lengths A
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the millimeter range. Note, however, that A for DNA

in vivo has a value of ~50 nm (Hagerman [24]), and A

for synthetic polymers is typically only a few nanome-

ters. Hence, the persistence lengths A� L of a typical

DNA molecule and a synthetic molecule are considerably

smaller than their contour lengths L. Recent studies

performed by means of optical tweezers seem to indicate

that under physiological conditions collagen I molecules

have a persistence length of ~14.5 nm which would be

less than 5% of their contour length of ~309 nm, see Sun

et al. [51]. Accordingly, collagen would be much more

flexible than previously assumed, yet even more flexible

than DNA. Although we suggest to stick to the wormlike

chain approach in the sequel, this is not a general limi-

tation of the overall constitutive model as such. Due to

the modular structure of the overall framework, the free

energy function for the individual fibers (1) can easily be

modified, adapted and integrated straightforwardly in the

macroscopic model.

On the extracellular matrix level

From a mechanical point of view, the extracellular matrix

is modeled as a surrounding substrate in which the indi-

vidual collagen fibers are embedded. A representative

volume element of the extracellular matrix thus consists of

a substrate of elastin, proteoglycans and cell, characterized

through the isotropic free energy wiso, and an anisotropic

contribution due to the individual chains wchn. Moreover,

we introduce a repulsive chain contribution wrep to char-

acterize the tissue’s behavior of the initial configuration

such that the total free energy may be written in the fol-

lowing form.

W ¼ Wiso þWchn þWrep ð3Þ

The individual terms of the free energy take on the

explicit representations.

Wiso ¼ 1

2
k ln2ðJÞ þ 1

2
lðIC

1 � ndimÞ � l lnðJÞ

Wchn ¼ kh
nchnL

4A
2

r2

L2
þ 1

1� r=L
� r

L

� �

Wrep ¼ kh
nchn

4A

1

L
þ 1

4r0ð1� r0=LÞ2
� 1

4r0

" #
�Wrep

ð4Þ

For the isotropic term Wiso, we apply a standard

neo-Hookean model expressed in terms of the first

invariant IC
1 ¼ C : I of the right Cauchy-Green tensor

C ¼ Ft � F;where F ¼ rXu denotes the deformation

gradient and J ¼ detðFÞ> 0 is its determinant. Moreover, k
and l are the standard Lamé constants.

The overall chain energy Wchn follows by summing up

the contributions wchn of eight individual chains weightened

by the overall chain number density nchn, i.e., the number of

chains per unit volume. According to the original eight-

chain model by Arruda and Boyce, each of these chains

connect the corners of a regular cuboid of dimensions 2 l1,

2 l2, and 2 l3 with its center, compare Fig. 2, left. The end-

to-end length r0 in the undeformed configuration, thus,

follows straightforwardly as r0 ¼
ffiffiffiffi
l2I

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l2

3

p
:

The unit cell is postulated to deform in the principal stretch

space. Accordingly, the end-to-end length r in the deformed

configuration can be expressed in terms of the deformation

gradient F or rather in terms of the right Cauchy-Green

tensor C,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2I �nI � �nI

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
I n0

I � C � n0
I

q
¼

ffiffiffiffiffiffiffiffi
l2
I
�IC
I

q
ð5Þ

with explicit summation over all three direction I = 1,2,3.

Here, we have introduced the non-standard invariants
�IC
I ¼ �nI � �nI ¼ n0

I � C � n0
I with the understanding that �IC

I

represents the stretch in the n0
I direction squared. Thereby,

n0
I are the unit normal vectors of the unit cell axes in the

undeformed reference configuration, see figure 3. After the

deformation, they map onto the vectors �nI ¼ F � n0
I which

are obviously no longer of unit length.

Finally, the repulsive contribution �Wrep ¼ � lnð�IC
1

�IC
2

�IC
3 Þ

is constructed to compensate for the chain stresses in the

reference configuration caused by non-vanishing initial

Fig. 2 Kinematics of the eight-chain model—orthotropic case (left),

transversely isotropic case (middle), and isotropic case (right)

l1 → λσ+
I

l3 → λσ+
III

l2 → λσ+
II

n0
1=nσ

I

n0
3=nσ

III

n0
2 = nσ

II

F, u

F, u

Fig. 3 Remodeling based on changes of cell dimensions s

Instantaneous alignment of cell axes n0
I with eigenvectors nr

I and

gradual adaptation of cell dimensions lIwith respect to eigenvalues

krþ
I
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end-to-end lengths r0. Classically, the free energy W
introduced in (3) defines the Cauchy stress r in the fol-

lowing form,

r ¼ 1

J

dW
dF
� Ft ¼ riso þ rchn þ rrep ð6Þ

whereby the individual stress contributions can be

expressed as follows.

riso ¼ 1

J
k lnðJÞ � l½ �I þ lb

rchn ¼ kh
nchn

4AJ

1

L
þ 1

4rð1� r=LÞ2
� 1

4r

" #
�rchn

rrep ¼ kh
nchn

4AJ

1

L
þ 1

4r0ð1� r0=LÞ2
� 1

4r0

" #
�rrep

ð7Þ

Herein, the Finger deformation tensor b ¼ F � Ft repre-

sents a characteristic spatial strain measure. The tensorial

basis of the chain stress follows straightforwardly as

�rchn ¼ l2I �nI � �nI :Note that the repulsive energy Wrep has

been constructed such that the corresponding tensorial

basis of the repulsive stress �rrep ¼ �l2I =�IC
I �nI � �nI ensures a

stress free reference configuration as rrep ¼ �rchnjr¼r0
for

which �IC
I ¼ 1 for all I = 1,2,3.

Remarks 3 [Special cases of transverse isotropy and

isotropy] The orthotropic eight-chain model, as introduced

by Bischoff et al. [3, 4], can be understood as a kinematic

generalization of the original isotropic eight-chain model,

as indicated in Fig. 2.

• Transverse isotropy l1 = r0 and l2 = l3 = 0 and thus

r ¼
ffiffiffiffiffi
�IC
1

p
r0

• Isotropy l1 ¼ l2 ¼ l3 ¼ r0=
ffiffiffi
3
p

and thus r ¼
ffiffiffiffiffiffiffiffiffiffi
IC
1 =3

p
r0

The case of transverse isotropy follows by choosing

l2 = l3, its yet more special case is the consideration of one

single fiber direction n0
1 with l1 = r0 and l2 = l3 = 0. In this

particular case, the end-to-end length r ¼
ffiffiffiffiffi
�IC
1

p
r0 is obvi-

ously equivalent to the scaled stretch along the fiber

direction n0
1: The special case of isotropy follows by

assuming that all three cell dimensions are equal

l1 ¼ l2 ¼ l3 ¼ r0=
ffiffiffi
3
p

such that the end-to-end length

r ¼
ffiffiffiffiffiffiffiffiffiffi
IC
1 =3

p
r0 can be expressed exclusively in terms of the

trace of the right Cauchy-Green tensor IC
1 ¼ C : I:

Remarks 4 [Parameters on the extracellular matrix level]

On the extracellular matrix level, the mechanical behavior is

characterized through eight parameters in total, i.e., Lamé

constants k and l characterizing the surrounding substrate,

the micromechanically motivated chain parameters L and A

and the chain number density nchn. For the moment, we shall

assume the chain number density to be constant, however, its

evolution in time due to changes in collagen content and

thickness could be incorporated straightforwardly. The

degree of anisotropy is governed by the unit cell dimensions

l1, l2, and l3 which implicitly define the end-to-end length

r0 ¼
ffiffiffiffi
l2I

p
in the initial configuration.

On the tissue level

In cardiovascular tissues, the collagen fibers are not arbi-

trarily distributed in space but follow rather a particular

pattern. To account for remodeling in the form of micro-

structural rearrangement, we allow the fiber direction to

rotate in response to the current mechanical stress envi-

ronment. We assume the Cauchy stress tensor

r ¼ kr
I nr

I � nr
I ð8Þ

to be the driving force of the remodeling process. Here, we

have introduced its eigenvalue decomposition with kr
I and

nI being the corresponding eigenvalues and eigenvectors,

respectively. For notational simplicity, we have implicitly

assumed the summation over all I = 1,2,3 components. Our

remodeling theory is based on two fundamental hypothe-

ses:

• Hypothesis I: The characteristic directions n0
I of the

microstructure align instantaneously with respect to the

eigenvectors nr
I :

• Hypothesis II: The unit cell dimensions lI adapt

gradually with respect to the positive eigenvalues krþ
I :

The first postulate is motivated by the general idea

beyond all network models that the unit cell is taken to

deform in the principal stretch space, see, e.g., Boyce and

Arruda [6]. The second postulate closely follows the recent

approach of Hariton et al. [25] suggesting that the collagen

fibers in cardiovascular tissues are located between the

directions of the two maximum principal stresses.

Accordingly, the essence of our remodeling theory can be

summarized as follows,

n0
I � nr

I and lI ! r0

krþ

I

jjkrþ
I jj

ð9Þ

compare with Fig. 3. For the sake of notational simplicity,

we have introduced the notion krþ

I with the understanding

that krþ

I ¼ kr
I for positive eigenvalues kr

I > 0 and krþ

I ¼ 0

for non-positive eigenvalues kr
I � 0: From a physiological

point of view, we thus exclusively allow for tension

driven reorientation processes. It remains to formulate a

reasonable evolution equation for the microstructural cell

dimensions lI which we assume to obey the following law
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dtlI ¼ j
krþ

I

jjkrþ
I jj
� l0

I

r0

� �
expð�jtÞr0 ð10Þ

where j denotes a relaxation parameter and l0
I ; I = 1,2,3,

are the dimensions of the cuboid in the undeformed

configuration. Alternatively, the above equation could be

integrated in time to render an explicit update equation for

all cell dimensions lI.

lI ¼
krþ

I

jjkrþ
I jj
� l0

I

r0

� �
½1� expð�jtÞ�r0 þ l0

I ð11Þ

Recall that the reorientation process itself leaves the

initial chain length r0 ¼
ffiffiffiffi
l2
I

p
unaltered.

Remarks 5 [Remodeling based on fiber rotation] Previous

remodeling approaches in the literature focused on the

reorientation of a single microstructural direction, see, e.g.,

Menzel [46], Kuhl et al. [37] and Himpel et al. [26].

Applications thus focused primarily on transversely

isotropic biological tissues with one distinguished fiber

orientation such as muscles, tendons or ligaments for which

l2 = l3� l1. Similar to the previous approach, reorientation

was assumed to be driven by either strain or stress, based on

an eigenvalue decomposition, as given in (8). In contrast to

the new model suggested in this contribution, the following

assumptions were postulated for the remodeling process:

• The characteristic direction n0
1 of the microstructure

aligns gradually with respect to the eigenvector nr
max

related to the maximum positive eigenvalue krþ
max:

• The unit cell dimensions lI remain unaffected by the

process of remodeling.

Consequently, the reorientation-based analogue of Eq.

(9) could be expressed as follows, compare Fig. 4.

n0
1 ! nr

max and lI ¼ const.

Rather than updating the scalar-valued unit cell lengths

lI, this reorientation approach requires an update of the

vector-valued fiber direction n0
I

dtn
0
1 ¼ x� n0

1

which is obviously more cumbersome due to numerical

singularities introduced through trigonometric functions.

In contrast to the rather simple explicit equation for

the adaptation of the unit cell dimensions (11), the

fiber direction can be expressed through the exponential

update

n0kþ1
1 ¼ expð�Dt e

3 �xÞ � n0k
1 x ¼ 1

j
n0kþ1

1 � nr
max

where x and e
3

denote the time discrete rotation vector and

the third-order permutation tensor, respectively. Recall that

in addition to potential numerical difficulties, this previous

reorientation approach is restricted to transversely isotropic

biological tissues and its extension to reorienting multiple

directions seems to be a rather complex task.

Remarks 6 [Dissipation] It is a well-accepted fact that a

purely mechanical theory is thermodynamically inadmis-

sible for remodeling processes that stiffen the material, see,

e.g., the discussions in Menzel [46], Kuhl et al. [37], and

Himpel et al. [26] or Garikipati et al. [20]. The fact that the

dissipation would be positive for stiffening materials in a

purely mechanical theory indicates that other thermody-

namic phenomena, e.g., of chemo-mechanical nature,

should indeed be taken into account. Alternatively, mixture

theories could be considered in which energy and entropy

are exchanged amongst the individual constituents of the

tissue, see, e.g., Gleason and Humphrey [22, 23].

Accordingly, to date, there is no general agreement of how

evolution laws for reorientation of microstructural direc-

tions should be formulated. In the context of linear elas-

ticity, it has been shown that the free energy attains an

extremum if strain and stress share the same principal

directions, see, e.g., Cowin [10] or Vianello [54]. In non-

linear elasticity, however, it is not even clear to date

whether stress or strain is the relevant driving force for the

remodeling process. The previous n0
1 ! nr

max non-linear

reorientation model addressed in Remark 5 is based on the

general paradigm that nature always tries to find the

extremum, see Menzel [46], Kuhl et al. [37] and Himpel

et al. [26]. However, the recent reorientation model for

arteries by Hariton et al. [25] just postulated a general

stress driven remodeling process and so does the model

presented herein. For detailed discussions about the impact

of the dissipation inequality in remodeling, the reader is

referred to the excellent discussion by Garikipati et al.

[20].

Remarks 7 [Parameters on the tissue level] An additional

convincing benefit of the incorporation of remodeling is

Fig. 4 Remodeling based on changes of cell orientation s Gradual

alignment of the cell axes n0
1 with eigenvector nr

max of related

maximum principal eigenvalue krþ
max and constant cell dimensions

lI = const
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that the number of parameters could even be reduced, as

compared to the fixed cell dimension model introduced in

Sect. ‘‘Governing equations.’’ For the overall model of

adapting living tissue, seven material parameters are

required altogether, i.e., the two Lamé constants k and l
for the extracellular matrix, the chain number density nchn,

the micromechanically motivated contour length L and the

persistence length A. However, now, instead of prescribing

fixed cell dimensions l1, l2, and l3, we just have to define

the initial chain length r0, while the individual dimensions

of the cell evolve naturally in response to the given

mechanical loading environment.

Nevertheless, one additional parameter j is introduced

to account for the speed of adaptation. From a biological

point of view, the relaxation parameter j reflects the

turnover rate or rather the speed of adaptation. Note that we

have implicitly assumed that the time scale for fiber

reorientation is orders of magnitude larger than the typical

time scale of a diastolic-systolic pressure circle. The role of

j is illustrated in Fig. 5 for a simulation with

k = 27.293, l = 3.103, nchn = 7.0 · 1021 chains per unit

volume, L = 2.125, A = 1.82, and r0 = 1.0. In the initial

state, we assume an isotropic fiber distribution with

l1 ¼ l2 ¼ l3 ¼ r0=
ffiffiffi
3
p

: The curves illustrate the angle of

alignment for a cubic specimen of unit length subject to

uniaxial tension with an incremental loading of DF = 1.0.

The load is applied in 10 steps in the dimensionless time

interval 0 < t £ 10. Then, at F = 10.0, the load is held

constant while the cell dimensions are allowed to remodel

progressively at 10 < t £ 100. Figure 5 demonstrates that

the collagen fibers align gradually with respect to the

loading axis. As time evolves, l1 fi r0 while l2 = l3 fi 0

whereby n0
1 is instantaneously aligned with the loading

axis. As expected, the speed of the adaptation process

increases for larger values of the relaxation parameter j.

Computational examples

Finally, the features of the proposed remodeling strategy is

elaborated by means of two benchmark problems, i.e., a

cylindrical tendon subject to uniaxial tension, and a tube-

like artery subject to uniaxial stretch in combination with

internal pressure.

Since we aim at elaborating inhomogeneous structures

with an initially random fiber orientation, the remodeling

strategy is embedded in a standard finite element algorithm

with the remodeling equation being evaluated at the inte-

gration point level. A Newton–Raphson solution strategy

based on a consistent linearization of the governing equa-

tions is applied throughout to solve the non-linear biome-

chanical problem efficiently in an incrementally iterative

way.

In the following examples, we choose the Lamé param-

eters to k = 27.293 and l = 3.103 according to Menzel

[45]. The Boltzmann constant is k = 1.381 · 10–23, and the

absolute temperature is h = 310, measured in Kelvin.

Recall that all chain lengths are normalized by a length

scale originating from the statistical model. Following

Garikipati et al. [19], we scale all lengths by the link length

in a chain. Accordingly, the contour length is chosen to be

L = 1.594, the corresponding persistence length that ac-

counts for a reasonable initial stiffness is A = 1.365, and the

initial end-to-end length is r0 ¼
ffiffiffiffi
l2I

p
¼ 1:0: The degree of

anisotropy is reflected through the chain number density

nchn, i.e., the number of chains per unit volume, which we

choose in the order of 1021, as suggested by Bischoff et al.

[3] or Garikipati et al. [19], thus nchn = 2 · 1021. The

relaxation parameter is chosen to be j = 0.025 per unit

time. In all examples, we start with an initially random fiber

orientation which is realized by assigning different values to

the unit cell dimensions lI in each element of the mesh. Due

to the geometric and material non-linearities of the problem,

the load is applied incrementally until the final load level is

reached. Then, the load is held constant while remodeling

occurs until convergence towards a biological equilibrium

state.

Cylindrical tendon under uniaxial tension

To elaborate the proposed remodeling algorithm in the

simple case of uniaxial loading, we analyze a cylindrical

tendon under uniaxial tension which has been studied

earlier in the context of tissue engineering of tendon

constructs by Kuhl et al. [37]. When strained along its

load-bearing axis, tendon shows a microscopical straight-

ening of the low amplitude wavy collagen fibers accom-

panied by an exponentially increasing resistance to

elongation. The model tendon we aim at analyzing quali-

tatively to elaborate whether the suggested model is able to
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Fig. 5 Tissue level s Angle between collagen fibers and direction of

uniaxial tension versus time for varying relaxation parameters j
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capture these general trends is 10 units long and has an

initial cross-section of 10 units2. It is discretized with 10

elements in height and 48 elements per cross-section, thus

with 480 tri-linear finite elements in total. The load is

increased incrementally with DF = 25 from 0 < t £ 12 until

a final load level of F = 300 is reached. From 12 < t £ 150,

we apply another 138 remodeling steps until biological

equilibrium occurs.

Figure 6 illustrates the remodeling history of the cylin-

drical tendon. At first, when the load is applied, the tendon

is stretched in the axial direction up to about 175% of its

original length, compare with Fig. 6, left. However, as time

evolves, the collagen fibers tend to align gradually with the

loading axis. Accordingly, the structure stiffens signifi-

cantly and the overall stretch decreases to about 140%. At

the final and yet stiffest state, all fibers are aligned with the

direction of the mechanical load.

During the remodeling process, the unit cell lengths

have obviously evolved from initially random values 0 £ lI
£ r0 with

ffiffiffiffi
l2I

p
¼ r0 to l1 = r0 and l2 = l3 = 0 representing

the special case of transverse isotropy. Selected snapshots

of the remodeling history are depicted in Fig. 6, right. For

each element, the end-to-end vectors of each chain have

been projected on the tendon’s surface. The individual

colors represent the collagen fiber angle measured against

the loading axis. Red colors indicate a full alignment with an

angle zero, while blue colors indicate that the collagen fibers

are oriented orthogonal to the loading axis. In particular, in

the second snapshot of the series at t = 12 corresponding to

the final loading state, the spatial inhomogeneity is nicely

visible. The red elements with aligned collagen fibers display

very stiff response and deform only marginally while the soft

blue elements undergo significant stretches. As expected,

this initial inhomogeneity tends to vanish gradually in the

course of remodeling.

Tube-like artery subject to uniaxial stretch and internal

pressure

We turn now to the more challenging example of a multi-

axial loading state induced by a uniaxial stretching in

combination with an internal pressure representing the blood

flow. It has long been recognized that the layered structure of

cardiovascular tissues displays a geometric complexity way

beyond the highly organized parallel bundles of collagen

fibers that constitute the mechanical backbone of tendons.

Motivated by earlier theoretical studies of Driessen et al.

[13] and Hariton et al. [25], and supported by the experi-

mental findings of Finlay et al. [16], we analyze the

remodeling history in a tube-like artery. At this point, we

restrict ourselves to a rather qualitative analysis aiming at

including physiologically realistic data at later stages of this

project. The initial dimensions are given through a length of

8 units and an inner and outer radius of 1 and 3 units,

respectively. Along the height we apply 12 elements, we use

8 elements across the thickness and 16 elements in circum-

ferential direction. Here, we apply standard tri-linear finite

elements. Note, however, that shell elements would be more

appropriate when it comes to quantitative studies. The load is

applied incrementally in 25 load steps from 0 < t£25 with

Dp = 0.192 p0 and Dl = 0.032 until a final state of p = 4.8 p0

and Dl = 0.8, i.e., an axial stretch of 10%, is reached. Again,

the load is then held constant for another 125 time steps for

the time period 25 < t£150 to allow for remodeling towards

a final state of biological equilibrium. Figure 7 shows five

selected snapshots of the remodeling process. In between the

first and the second snapshot, the internal pressure and the

prescribed axial stretch are increased incrementally.

Accordingly, the tube blows up and stretches along its axial

direction occur. Due to the nearly incompressible behavior of

soft biological tissues, the tube thickness decreases drasti-

cally in response to loading. As time evolves, the collagen

fibers tend to reorient so that they are finally located between

the two directions of maximum principal stress. For this

particular case of loading, these are obviously the longitu-

dinal and the circumferential directions.

Starting from an initial random orientation at random

unit cell lengths 0 £ lI £ r0 with
ffiffiffiffi
l2
I

p
¼ r0 in the first

snapshot of the series, the unit cell lengths evolve pro-

gressively driven by the positive eigenvalues of the Cauchy

stress krþ
I : As a natural consequence, the chain directions

remodel gradually and the tube stiffens with respect to the
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Fig. 6 Cylindrical tendon

under uniaxial tension s Stretch

versus time (left) and selected

snapshots of the remodeling

process at different times with

colors representing the

individual collagen fiber angles

(right)

J Mater Sci (2007) 42:8811–8823 8819

123



applied loading. Accordingly, the outer radius, which had

increased during the first stages of loading, decreases

remarkably in response to remodeling, compare time t = 24

with t = 150. While the chains had originally been oriented

randomly in space at t = 1, their component in radial

direction vanishes gradually as l3 goes to zero in response

to the compressive stresses kr
3 � 0 in the radial direction at

t = 150. Thus, the suggested remodeling algorithm proves

able to produce not only transversely isotropic but also

orthotropic microstructures in a natural way.

Recall that the final collagen fiber angles developed

naturally in response to the positive eigenvalues krþ
I of the

Cauchy stress r which had been postulated to be the

driving force of the remodeling process. Due to the inho-

mogeneous stress state across the radial direction, different

fiber angles arise in the individual layers.

Figure 8 depicts the final collagen fiber orientations at

three different radial locations representing the intima, the

media and the adventitia. The results suggest that the

transmural pitch of the fiber orientation increases from the

inner to the outer wall. The analytically predicted double-

helix architecture of the collagen fibers agrees very well

with experimental observations by Finlay et al. [16] and

Holzapfel et al. [27, 30]. In addition, our results nicely

agree with the more recent numerical studies by Driessen

et al. [13] and Hariton et al. [25].

The predicted inhomogeneity in the radial direction with

an almost circumferential fiber orientation at the luminal

side of the artery and an increase of the inclination towards

the outer side is closely related to the phenomenon of

prestress, typically encountered in arterial specimens. For

the considered model problem, the degree of inhomoge-

neity, obviously, strongly depends on the stretch-to-pres-

sure ratio. Motivated by a recent study by Gleason and

Humphrey [23] who analyzed the elastin, collagen and

smooth muscle cell turnover and remodeling in response to

different loading scenarios, we systematically elaborate

combinations of transmural pressure and axial stress. To

illustrate the influence of the mechanical loading situation

on the remodeling process, we display Fig. 9 to show the

final biological equilibrium stages for different stretches at

different pressure levels. For the sake of visibility, we have

virtually peeled off the individual layers after the calcula-

tion of the entire tube had been performed. Experimentally,

the definition of these specific layers could be made

apparent by the use of stains differentiating smooth mus-

cles cells from collagen fibers. For pure stretching, as

depicted in Fig. 9 (left), the fibers of all layers are aligned

with the loading axis, i.e., l1 = r0 and l2 = l3 = 0 with

n0
1 pointing in the axial direction. For pure pressure,

as depicted in Fig. 9 (right), all fibers are oriented in

the circumferential direction, i.e., again, l1 = r0 and

l2 = l3 = 0, however, now with n0
1 pointing in the circum-

ferential direction. These computational results agree well

with the experimental findings of human brain arteries by

Finlay et al. [16] who reported a significant realignment of

collagen with increasing distending pressure for all arterial

layers and a recruitment towards the circumferential

direction. Intermediate stages of combined stretch and

pressure loading, as shown in the three images between the

left and the right image of Fig. 9, reveal the usually

observed helical fiber arrangement. Based on these results,

it is obvious to suggest that the collagenous architecture

strongly depends on the mechanical environment.

In the biomechanics community there is an ongoing

debate over which quantity drives the remodeling process.

To this end, we analyze the influence of different driving

forces of tensorial nature. For purpose of comparison with

Fig. 7 Tube-like artery subject

to axial stretch and internal

pressure s Selected snapshots

of the remodeling process at

different times with colors

representing the individual

collagen fiber angles

Fig. 8 Tube-like artery subject to axial stretch and internal pressure

s Final stage of the remodeling process with collagen fiber

orientations projected on the individual layers
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the (spatial) Cauchy stress r used in the previous examples,

we now elaborate the use of the (material) second Piola–

Kirchhoff stress S ¼ JF�1 � r � F�t; as the representative

material stress measure. Figure 10 compares now the out-

come of a remodeling process driven by spatial and

material stresses. The diagram illustrates the fiber orien-

tation angle over the radius. Variations in fiber orientation

seem to be slightly more pronounced when using the sec-

ond Piola–Kirchhoff stress as the driving force. Neverthe-

less, for this particular problem, it appears that differences

are rather marginal. We suggest that the Cauchy stress,

which is the true stress experienced by the deformed

structure, is the more reasonable choice.

Finally, we elaborate the difference of a stress and

strain-based remodeling criterion, as used by, e.g., Driessen

et al. [13], Menzel [46] and Humphrey [32], Hariton et al.

[25], respectively. To this end, we compare the outcome of

two different remodeling processes based on either the

Cauchy stress r as the characteristic spatial stress measure,

see Fig. 11 (left), or on the Finger deformation tensor b as

the characteristic spatial strain measure, see Fig. 11 (right).

Both the curves as well as the plots of the structure dem-

onstrate that strain-based remodeling is much less sensitive

to the radial variation. The difference between an almost

circumferential arrangement at the luminal side and a

rather helical structure towards the outermost layer is less

%%% % %

Fig. 9 Tube-like artery subject

to axial stretch and internal

pressure s Variations of

collagen fiber orientations in

response to different stretch-to-

pressure ratios with colors

representing the individual

collagen fiber angles
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Fig. 10 Tube-like artery

subject to axial stretch and

internal pressure s Collagen

fiber orientation versus radial

position (left) and outcome of

spatial versus material stress-

based remodeling (right)
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Fig. 11 Tube-like artery

subject to axial stretch and

internal pressure s Collagen

fiber orientation versus radial

position (left) and outcome of

spatial stress versus spatial

strain-based remodeling (right)
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pronounced for the strain driven case. This finding is, of

course, rooted in the non-linear nature of the force-

displacement behavior of the individual chains, recall

Fig. 1. While the strain varies slowly close to the locking

stretch, corresponding stresses may vary significantly.

Accordingly, the stress-based remodeling criterion predicts

a wider variation in collagen fiber angles than the strain

driven remodeling algorithm. Although for hard tissues,

such as bone, several studies including the one by Cowin

[9] suggest that strain is the critical mechanical factor in

growth and adaptation, we postulate that stress is a more

reasonable choice as the driving force in the context of soft

tissues such as arteries, tendons or ligaments. This obser-

vation is along with Taber and Humphrey [52] who suggest

that stress and not strain correlates well with growth in

arteries.

Discussion

A continuum theory of remodeling for soft biological tis-

sues has been proposed with a particular focus on cardio-

vascular tissue. In this context, remodeling is attributed to

the collagen fiber reorientation as a natural consequence of

changes in the mechanical loading environment. Hence, in

our approach the optimal configuration of collagen fibers

depends solely on the external loading acting upon the

living tissue. Based on a homogenization strategy from the

molecular microscale via the mesoscale of the extracellular

matrix to the macroscale of the overall tissue, we derived a

statistical mechanics-based chain network model governed

by a limited set of physically motivated material parame-

ters. In addition to the two (classical) Lamé constants, five

additional parameters sufficed to characterize the highly

non-linear, exponentially stiffening of the collagen mor-

phology: the contour length, the persistence length and the

initial end-to-end length of the collagen chains, the chain

number density accounting for the degree of anisotropy and

the turnover rate. The concept of chain network models

was applied to transmit information from the molecular

level to the extracellular matrix level. In contrast to exist-

ing remodeling theories which are based on complex

rotational updates of characteristic microstructural direc-

tions, our theory essentially captures remodeling in the

form of changes of the dimensions of this representative

element. By means of simple model problems, we were

able to show that the theory indeed succeeded in charac-

terizing mechanically introduced remodeling of collagen

fibers.

Finally, we elaborated two biomechanically relevant

boundary-value problems, a cylindrical tendon subject to

uniaxial tension and a tube-like artery loaded by an axial

stretch in combination with different internal pressures. For

these more complex inhomogeneous (living) structures, the

remodeling algorithm was embedded in a non-linear finite

element program, the equations were linearized consis-

tently and solved with an incremental iterative Newton–

Raphson solution strategy. Starting with initially random

fiber orientation, the algorithm generated collagenous

architectures which qualitatively resembled experimental

observations. In all computational examples, the suggested

algorithm convinced through its remarkable stability and

robustness. What remains, however, is the realization of

quantitative validations of the suggested theory and its

algorithmic realization. In addition to the collagen fiber

orientation, which could eventually be determined through

techniques such as microscopy, histology, magnetic reso-

nance diffusion tensor imaging, the chain number density

and the turnover rate remain to be classified. The latter is

assumed to be of particular relevance in the context of

improving cardiovascular surgery and predicting patient-

specific remodeling in response to medical treatment.

Finally we would like to point out once again, that

although the reorientation approach outlined in the present

manuscript is motivated by micromechanical consider-

ations, it is still rather phenomenological to most extend. In

contrast to purely invariant based formulations, it intro-

duces material parameters such as the contour length or the

persistence length which have a clear physical interpreta-

tion. The computational mechanics community would thus

certainly classify the model as bottom-up or rather micro-

mechanically based and non-phenomenological. In the cell

biology community, however, the same model would most

probably be considered rather phenomenological or top-

down since it does not explicitly address cell level

phenomena like mechanotransduction or the biochemical

origin of the remodeling process as such. Nevertheless, to

date it seems unmanageable to simulate large tissue

structures or organs and yet at the same time to account for

every single biochemical phenomenon individually. To the

most extend, these complex mechanisms are not even fully

understood at this point.

Successful constitutive models require an understanding

of the functional interactions between the key components

of cells up to the organs, and how these interactions change

from a physiological to a pathological state. Such infor-

mation resides neither in the individual genome nor in the

protein. This information is contained in the interactions of

proteins with cellular, organ and system structures. The

identification of these interactive relationships is clearly

within the focus of intense current research. Continuum

models like the one presented herein will certainly benefit

from gradually incorporating more and more information

from the protein, subcellular and cellular level in the future

to define precisely how mechanical forces translate into

chemical signals that initiate the process of remodeling.
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